31、试述新变压器或大修后的变压器,为什么正式投运前要做冲击试验?一般冲击几次? 答:新变压器或大修后的变压器在正式投运前要做冲击试验的原因如下: 1、检查变压器绝缘强度能否承受全电压或操作过电压的冲击。 当拉开空载变压器时,是切断很小的激磁电流,可能在激磁电流到达零点之前发生强制熄灭,由于断路器的截流现象,使具有电感性质的变压器产生的操作过电压,其值除与开关的性能、变压器结构等有关外,变压器中性点的接地方式也影响切空载变压器过电压。一般不接地变压器或经消弧线圈接地的变压器,过电压幅值可达4-4.5倍相电压,而中性点直接接地的变压器,操作过电压幅值一般不超过3倍相电压。这也是要求做冲击试验的变压器中性点直接接地的原因所在。 2、考核变压器在大的励磁涌流作用下的机械强度和考核继电保护在大的励磁涌流作用下是否会误动。 冲击试验的次数: 新变压器投入一般需冲击五次,大修后的变压器投入一般需冲击三次。
32、三台具有相同变比和连接组别的三相变压器,其额定容量和短路电压分别为:Sa=1000kVA Uka%=6.25%Sb=1800kVA Ukb=6.6%Sc=3200kVA Ukc=7%将它们并联运行后带负载S=5500kVA,问:1、每台变压器分配的负荷?2、三台变压器在不允许任何一台过负荷的情况下,能担负多少大总负荷?3、变压器总的设备容量的利用率? 答: 1、ΣSh/Uk%=1000/0.0625+1800kVA/0.066+3200kVA/0.07=8900(kVA) 每台变压器的分配比例: Pa= S/Uka%·Σsh/Uk=5500/0.0625×8900=0.99 Pb= S/Ukb%·Σsh/Uk=5500/0.066×8900=0.936 Pc= S/Ukc%·Σsh/Uk=5500/0.07×8900=0.883 各台变压器分配的实际负荷: S1=1000×0.99=990kVA S2=1800×0.936=1685kVA S3=3200×0.883=2825kVA 2、具有小短路电压的变压器达到满负荷时,三台大共同可担负的负荷是: Smax=5500×1/0.99=5560kVA 3、变压器总的设备利用率ρ为: Smax 5560 ρ= ----=------------ = 0.923 ∑S 1000+1800+3200
33、自耦变压器与普通变压器有什么不同? 答:自耦变压器与普通变压器不同之处是: 1、其一次侧与二次侧不仅有磁的联系,而且有电的联系,而普通变压器仅是磁的联系。 2、电源通过变压器的容量是由两个部分组成:即一次绕组与公用绕组之间电磁感应功率,和一次绕组直接传导的传导功率。 3、由于自耦变绕组是由一次绕组和公用绕组两部分组成,一次绕组的匝数较普通变压器一次绕组匝数和高度及公用绕组电流及产生的漏抗都相应减少,自耦变的短路电抗X自是普通变压器的短路电抗X普的(1-1/k)倍,k为变压器变比。 4、若自耦变压器设有第三绕组,其第三绕组将占用公用绕组容量,影响自耦变运行方式和交换容量。 5、由于自耦变压器中性点必须接地,使继电保护的定植整定和配置复杂化。 6、自耦变压器体积小,重量轻,便于运输,造价低。
34、变压器本体构造有那些安全保护设施?其主要作用是什么? 答:变压器本体构造中保护设施是: 1、油枕: 其容量约为变压器油量的8-10%。作用是:容纳变压器因温度的变化使变压器油体积变化,限制变压器油与空气的接触,减少油受潮和氧化程度。油枕上安装吸湿器,防止空气进入变压器。 2、吸湿器和净油器: 吸湿器又称呼吸器,内部充有吸附剂,为硅胶式活性氧化铝,其中常放入一部分变色硅胶,当由兰变红时,表明吸附剂已受潮,必须干燥或更换。净油器又称过滤器,净油缸内充满吸附剂,为硅胶式活性氧化铝等,当油经过净油器与吸附剂接触,其中的水份、酸和氧化物被吸收,使油清洁,延长油的使用年限。 3、防爆管(安全气道): 防爆管安装在变压器箱盖上,作为变压器内部发生故障时,防止油箱内产生高压力的释放保护。现代大型变压器已采用压力释放阀代替安全气道。当变压器内部发生故障压力升高,压力释放阀动作并接通触头报警或跳闸。此外,变压器还具有瓦斯保护,温度计、油表等安全保护装置。
35、什么叫电磁环网?对电网运行有何弊端?什么情况下还需保留? 答:电磁环网是指不同电压等级运行的线路,通过变压器电磁回路的联接而构成的环路。 电磁环网对电网运行主要有下列弊端: 1)、易造成系统热稳定破坏。如果在主要的受端负荷中心,用高低压电磁环网供电而又带重负荷时,当高一级电压线路断开后,所有原来带的全部负荷将通过低一级电压线路(虽然可能不止一回)送出,容易出现超过导线热稳定电流的问题。 2)、易造成系统动稳定破坏。正常情况下,两侧系统间的联络阻抗将略小于高压线路的阻抗。而一旦高压线路因故障断开,系统间的联络阻抗将突然显著地增大(突变为两端变压器阻抗与低压线路阻抗之和,而线路阻抗的标么值又与运行电压的平方成正比),因而极易超过该联络线的暂态稳定极限,可能发生系统振荡。 3)、不利于经济运行。500kV与220kV线路的自然功率值相差极大,同时500kV线路的电阻值(多为4×400平方毫米导线)也远小于220kV线路(多为2×240或1×400平方毫米导线)的电阻值。在500/220kV环网运行情况下,许多系统潮流分配难于达到经济。 4)、需要装设高压线路因故障停运后联锁切机、切负荷等安全自动装置。但实践说明,若安全自动装置本身拒动、误动将影响电网的安全运行。 一般情况中,往往在高一级电压线路投入运行初期,由于高一级电压网络尚未形成或网络尚不坚强,需要保证输电能力或为保重要负荷而又不得不电磁环网运行。
36、常见母线接线方式有何特点? 答:1)、单母线接线:单母线接线具有简单清晰、设备少、投资小、运行操作方便且有利于扩建等优点,但可靠性和灵活性较差。当母线或母线隔离开关发生故障或检修时,必须断开母线的全部电源。 2)双母线接线:双母线接线具有供电可靠,检修方便,调度灵活或便于扩建等优点。但这种接线所用设备多(特别是隔离开关),配电装置复杂,经济性较差;在运行中隔离开关作为操作电器,容易发生误操作,且对实现自动化不便;尤其当母线系统故障时,须短时切除较多电源和线路,这对特别重要的大型发电厂和变电所是不允许的。3)单、双母线或母线分段加旁路:其供电可靠性高,运行灵活方便,但投资有所增加,经济性稍差。特别是用旁路断路器带路时,操作复杂,增加了误操作的机会。同时,由于加装旁路断路器,使相应的保护及自动化系统复杂化。4)3/2及4/3接线:具有较高的供电可靠性和运行灵活性。任一母线故障或检修,均不致停电;除联络断路器故障时与其相连的两回线路短时停电外,其它任何断路器故障或检修都不会中断供电;甚至两组母线同时故障(或一组检修时另一组故障)的极端情况下,功率仍能继续输送。但此接线使用设备较多,特别是断路器和电流互感器,投资较大,二次控制接线和继电保护都比较复杂。5)母线-变压器-发电机组单元接线:它具有接线简单,开关设备少,操作简便,宜于扩建,以及因为不设发电机出口电压母线,发电机和主变压器低压侧短路电流有所减小等特点。
37、什么是电力系统综合负荷模型?其特点是什么?在稳定计算中如何选择? 答:电力系统综合负荷模型是反映实际电力系统负荷的频率、电压、时间特性的负荷模型,一般可用下式表达:P=fp(v,f,t) Q=fq(v,f,t) 上式中,若含有时间t则反映综合负荷的动态特性,这种模型称为动态负荷模型(动态负荷模型主要有感应电动机模型和差分方程模型两种。);反之,若不含有时间t,则称为静态负荷模型(静态负荷模型主要有多项式模型和幕函数模型两种,其中多项式模型可以看作是恒功率(电压平方项)、恒电流(电压一次方项)、恒阻抗(常数项)三者的线性组合)。 电力系统综合负荷模型的主要特点是: 具有区域性---每个实际电力系统有自己特有的综合负荷模型,与本系统的负荷构成有关; 具有时间性:既是同一个电力系统,在不同的季节,具体不同的综合负荷模型; 不性:研究的问题不同,采用的综合负荷模型也不同; 在稳定计算中综合负荷模型的选择原则是: 在没有精切综合负荷模型的情况下,一般按40%恒功率;60%恒阻抗计算。
38、什么叫不对称运行?产生的原因及影响是什么? 答:任何原因引起电力系统三相对称(正常运行状况)性的破坏,均称为不对称运行。如各相阻抗对称性的破坏,负荷对称性的破坏,电压对称性的破坏等情况下的工作状态。非全相运行是不对称运行的特殊情况。不对称运行产生的负序、零序电流会带来许多不利影响。 电力系统三相阻抗对称性的破坏,将导致电流和电压对称性的破坏,因而会出现负序电流,当变压器的中性点接地时,还会出现零序电流。 当负序电流流过发电机时,将产生负序旋转磁场,这个磁场将对发电机产生下列影响: ⑴发电机转子发热; ⑵机组振动增大; ⑶定子绕组由于负荷不平衡出现个别相绕组过热。 不对称运行时,变压器三相电流不平衡,每相绕组发热不一致,可能个别相绕组已经过热,而其它相负荷不大,因此必须按发热条件来决定变压器的可用容量。 不对称运行时,将引起系统电压的不对称,使电能质量变坏,对用户产生不良影响。对于异步电动机,一般情况下虽不致于破坏其正常工作,但也会引起出力减小,寿命降低。例如负序电压达5%时,电动机出力将降低10∽15%,负序电压达7%时,则出力降低达20∽25%。 当高压输电线一相断开时,较大的零序电流可能在沿输电线平行架设的通信线路中产生危险的对地电压,危及通讯设备和人员的安全,影响通信质量,当输电线与铁路平行时,也可能影响铁道自动闭锁装置的正常工作。因此,电力系统不对称运行对通信设备的电磁影响,应当进行计算,必要时应采取措施,减少干扰,或在通信设备中,采用保护装置。 继电保护也必须认真考虑。在严重的情况下,如输电线非全相运行时,负序电流和零序电流可以在非全相运行的线路中流通,也可以在与之相连接的线路中流通,可能影响这些线路的继电保护的工作状态,甚至引起不正确动作。此外,在长时间非全相运行时,网络中还可能同时发生短路(包括非全相运行的区内和区外),这时,很可能使系统的继电保护误动作。 此外,电力系统在不对称和非全相运行情况下,零序电流长期通过大地,接地装置的电位升高,跨步电压与接触电压也升高,故接地装置应按不对称状态下保证对运行人员的安全来加以检验。 不对称运行时,各相电流大小不等,使系统损耗增大,同时,系统潮流不能按经济分配,也将影响运行的经济性。
39、试述电力系统谐波产生的原因及其影响? 答:谐波产生的原因:高次谐波产生的根本原因是由于电力系统中某些设备和负荷的非线性特性,即所加的电压与产生的电流不成线性(正比)关系而造成的波形畸变。当电力系统向非线性设备及负荷供电时,这些设备或负荷在传递(如变压器)、变换(如交直流换流器)、吸收(如电弧炉)系统发电机所供给的基波能量的同时,又把部分基波能量转换为谐波能量,向系统倒送大量的高次谐波,使电力系统的正弦波形畸变,电能质量降低。当前,电力系统的谐波源主要有三大类。 1)、铁磁饱和型:各种铁芯设备,如变压器、电抗器等,其铁磁饱和特性呈现非线性。 2)、电子开关型:主要为各种交直流换流装置(整流器、逆变器)以及双向晶闸管可控开关设备等,在化工、冶金、矿山、电气铁道等大量工矿企业以及家用电器中广泛使用,并正在蓬勃发展;在系统内部,如直流输电中的整流阀和逆变阀等。 3)、电弧型:各种冶炼电弧炉在熔化期间以及交流电弧焊机在焊接期间,其电弧的点燃和剧烈变动形成的高度非线性,使电流不规则的波动。其非线性呈现电弧电压与电弧电流之间不规则的、随机变化的伏安特性。对于电力系统三相供电来说,有三相平衡和三相不平衡的非线性特性。后者,如电气铁道、电弧炉以及由低压供电的单相家用电器等,而电气铁道是当前中压供电系统中典型的三相不平衡谐波源。 谐波对电网的影响: 1、谐波对旋转设备和变压器的主要危害是引起附加损耗和发热增加,此外谐波还会引起旋转设备和变压器振动并发出噪声,长时间的振动会造成金属疲劳和机械损坏。 2、谐波对线路的主要危害是引起附加损耗。 3、谐波可引起系统的电感、电容发生谐振,使谐波放大。当谐波引起系统谐振时,谐波电压升高,谐波电流增大,引起继电保护及自动装置误动,损坏系统设备(如电力电容器、电缆、电动机等),引发系统事故,威胁电力系统的安全运行。 4、谐波可干扰通信设备,增加电力系统的功率损耗(如线损),使无功补偿设备不能正常运行等,给系统和用户带来危害。限制电网谐波的主要措施有:增加换流装置的脉动数;加装交流滤波器、有源电力滤波器;加强谐波管理。
40、什么是电力系统序参数?零序参数有何特点?与变压器接线组别、中性点接地方式、输电线架空地线、相邻平行线路有何关系? 答:对称的三相电路中,流过不同相序的电流时,所遇到的阻抗是不同的,然而同一相序的电压和电流间,仍符合欧姆定律。任一元件两端的相序电压与流过该元件的相应的相序电流之比,称为该元件的序参数(阻抗)。 负序电抗是由于发电机转子运动反向的旋转磁场所产生的电抗,对于静止元件(变压器、线路、电抗器、电容器等)不论旋转磁场是正向还是反向,其产生的电抗是没有区别的,所以它们的负序电抗等于正序电抗。但对于发电机,其正向与反向旋转磁场引起的电枢反应是不同的,反向旋转磁场是以两倍同步频率轮换切割转子纵轴与横轴磁路,因此发电机的负序电抗是一介于X〃d及X〃q的电抗值,远远小于正序电抗Xd。 零序参数(阻抗)与网络结构,特别是和变压器的接线方式及中性点接地方式有关。一般情况下,零序参数(阻抗)及零序网络结构与正、负序网络不一样。 对于变压器,零序电抗则与其结构(三个单相变压器组还是三柱变压器)、绕组的连接(△或Y)和接地与否等有关。当三相变压器的一侧接成三角形或中性点不接地的星形时,从这一侧来看,变压器的零序电抗总是无穷大的。因为不管另一侧的接法如何,在这一侧加以零序电压时,总不能把零序电流送入变压器。所以只有当变压器的绕组接成星形,并且中性点接地时,从这星形侧来看变压器,零序电抗才是有限的(虽然有时还是很大的)。 对于输电线路,零序电抗与平行线路的回路数,有无架空地线及地线的导电性能等因素有关。零序电流在三相线路中是同相的,互感很大,因而零序电抗要比正序电抗大,而且零序电流将通过地及架空地线返回,架空地线对三相导线起屏蔽作用,使零序磁链减少,即使零序电抗减小。 平行架设的两回三相架空输电线路中通过方向相同的零序电流时,不仅第一回路的任意两相对第三相的互感产生助磁作用,而且第二回路的所有三相对第一回路的第三相的互感也产生助磁作用,反过来也一样.这就使这种线路的零序阻抗进一步增大。
|